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a b s t r a c t

This paper investigates the vibrations of balanced fault-free ball bearings. A lumped

mass-damper-spring model is adopted including the use of the Hertzian contact theory

to represent the stiffness of the bearing rolling elements. We found that the equilibrium

point of the bearing undergoes a supercritical pitchfork bifurcation as the bearing

response functions of the horizontal and vertical motions of bearings with small

internal clearance (below the bifurcation point). We also developed a chaos map to

describe the locations and intensity of chaos in the internal clearance–shaft

speed parameter space for bearings with larger internal clearance (beyond the

bifurcation point).

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As a first step in the development of a ball bearing health-monitoring system, it is essential to establish a base-line for
the behaviour of healthy bearings. Gustafsson and Tallian [1] and Sunnersjo [2] identified the fundamental reason for the
vibrations of rolling element bearings to be the varying compliance of the rolling elements supporting the radial load. Their
studies show that the overall bearing compliance varies with a frequency corresponding to the ball-passage frequency. As a
result, fault-free bearings supporting balanced shafts and rotors vibrate due to the finite number of rolling elements
carrying the radial load thereby constituting self-excited oscillators. Tallian and Gustafsson [3] predicted that larger
internal clearances increase the level of bearing vibrations. Wardel and Poon [4] experimentally verified this conclusion. In
a series of papers, Tamura and co-workers [5–7] analyzed the stiffness characteristics and vibrations of self-aligning ball
bearings for bearings containing two, three, four, and a large number of balls. They used the Hertzian contact theory to
derive simplified expressions describing the nonlinear stiffness of the balls.

Meyer et al. [8] first proposed to model bearing vibrations by linear springs representing the balls under axial (thrust)
loads. Tandon and Choudhury [9,10] developed a three degree-of-freedom model for the vibration of rolling element
bearings to characterize and predict the bearing response to inner race, rolling element, and outer race defects under radial
loads. They suggested that the stiffness of the rolling elements could be assumed linear, since variations in the shaft
displacement, over time, were small. Akturk et al. [11,12] presented a nonlinear three degree-of-freedom model that used
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Hertzian contact theory to represent the stiffness of the rolling elements. Numerical simulations of the model showed that
increasing the preload and/or the number of balls in the bearing reduces the vibration amplitude.

Recently, there has been a lot of interest in the vibrations of faulty bearings and/or bearings supporting unbalanced
radial loads. Most of that work has used two-degree-of-freedom nonlinear models employing the Hertzian contact theory
to represent the stiffness of the rolling elements. For example, Tiwari et al. [13,14] studied the vibrations of fault-free ball
bearings excited by unbalanced rotors for various values of internal clearance. Their numerical and experimental results
showed that chaos appears in three ranges of the shaft speed. As the level of external forcing (unbalance) decreased, the
shaft speed ranges where chaos happened shifted down the frequency spectrum and the extent of the chaotic response
within these ranges increased. They also found that the prevalence of nonlinear phenomena in the bearing response
increases as the level of external forcing and internal clearance increase. Harsha et al. [15–17] investigated the effects of
surface waviness of the inner and outer races on the vibrations of ball and roller bearings. They showed that surface
waviness acts as an external forcing frequency that is a rational multiple of the ball passage frequency and that increasing
the number of balls reduces the vibration amplitude. Further, they confirmed the appearance of chaos in the bearing
response in three ranges of the shaft speed.

A subset of research on the vibrations of ball bearings has studied the vibrations of fault-free bearings supporting
balanced radial loads. The main difference between the vibrations of those bearings and the vibrations of faulty or
unbalanced bearings is that the former represent a simple self-excited oscillator, while the latter represent a more
complex case of multi-frequency excitation. Gad et al. [18] showed numerically that balanced fault-free ball bearings
exhibit harmonic, superharmonic, subharmonic, beat, and chaotic oscillations. Mevel and Guyader [19] used numerical
simulations to show that a lightly damped ball bearing undergoes a period-doubling route to chaos when the ball passage
frequency is near the first critical speed (natural frequency of horizontal motion) and a quasi-periodic route to
chaos when the ball passage frequency is near the second critical speed (natural frequency of vertical motion). Tiwari et al.
[20] found three chaotic attractors that do not necessarily correspond to the critical shaft speeds and that those attractors
shrink and disappear as the internal clearance decreases and the damping increases. They also found that the critical
speeds and chaotic attractors appear at lower shaft speeds as the internal clearance increases. Harsha [21] reported
a single chaotic attractor appearing through a period-doubling route to chaos at shaft speeds corresponding to the
horizontal natural frequency of the vibratory system and another range of quasi-periodic motions at higher shaft speeds.
Ghafari et al. [22] experimentally verified the existence of a chaotic attractor in the vibrations of balanced fault-free ball
bearings.

The objective of the current work is to provide a better understanding of the vibrations of balanced fault-free ball
bearings and the impact of the bearing internal clearance on those vibrations. Towards that goal, we use a nonlinear
dynamic model based on the Hertzian contact theory to explore the bifurcations of the equilibrium point of the bearing,
develop closed-form expressions for the self-excited motions of the bearing, and map the chaotic attractors present in the
internal clearance-shaft speed parameter space.
2. Rotor-shaft-bearing system model

We investigate the dynamics of the ball bearing in-situ as a part of a rotor-shaft-bearing assembly. Following Fukata
et al. [23], the system is modeled as a mass-damper-spring system. As illustrated in Fig. 1, the rotor and shaft are modeled
X
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Fig. 1. Ball bearing model.
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as a lump rigid mass located at the center of the inner ring (x, y), and supported by a set of identical parallel nonlinear
springs representing the balls. The restoring force of the springs (balls) in the loading zone provides the excitation applied
to the mass. This two degree-of-freedom model ignores the inertia of the balls and the flexibility of the shaft. Further, the
following assumptions are made:
(1)
 The shaft is held at the center of the inner ring and the outer ring is stationary.

(2)
 The only external force is the weight of the rotor-shaft. The balls and raceways are fault-free and the rotor and shaft are

balanced.

(3)
 The geometric parameters of the bearing, namely the radii of the inner Ri and outer Ro rings, the internal clearance e,

and the ball diameter Db, are constant during operation.
The cage keeps the balls equally-spaced around the shaft. The angular location of the ith ball yi(t) is given by:

yi ¼otþ
2pi

N
; (1)

where N is the number of balls. The cage speed o is related to the shaft speed os by

o¼ Rios

RiþRo
: (2)

The restoring force Fi(t) of each ball in the load zone is calculated based on Hertzian contact theory

Fi ¼ kdn
i ; (3)

where the stiffness k is a function of the contact curvatures, elastic modulus, and Poisson’s ratio of the bearing components.
The power n depends on the rolling element shape; for ball elements n=1.5. The radial deformation of each ball di(t) is
given by:

di ¼ x cos otþ
2pi

N

� �
þy sin otþ

2pi

N

� �
�e: (4)

Using Eqs. (3) and (4) and summing the forces in the X and Y directions, the governing equations of motion of the bearing
system can be expressed as follows:

m €xþc _xþk
XNc�1

i ¼ 0

x cos otþ
2pi

N

� �
þy sin otþ

2pi

N

� �
�e

� �1:5

cos otþ
2pi

N

� �
¼ 0;

m €yþc _yþk
XNc�1

i ¼ 0

x cos otþ
2pi

N

� �
þy sin otþ

2pi

N

� �
�e

� �1:5

sin otþ
2pi

N

� �
¼W ; (5)

where x(t) and y(t) are the coordinates of the shaft mass, Nc(t) is the number of balls in the loading zone, W is the weight of
the rotor and shaft, and c is the overall damping coefficient.

2.1. The loading zone

The balls are compressed as they transmit the radial load from the inner ring to the outer ring. For bearings with
nonzero radial clearance, the radial load is distributed over a subset of the balls, Fig. 2, inside a load-carrying zone. The
-e
�t

Y

X

-e- (W/k)2/3
rt

�c

Fig. 2. Load distribution angle.
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number of those balls Nc is a function of the load, radial clearance, and the dynamic state of the bearing. The radial
deformation of the balls is positive only for those balls within the loading zone

di40 ith ball inside the load zone:

dir0 ith ball outside the load zone:

(
(6)

Applying the polar transformation x=rt cos at, y=rt sin at to Eq. (4) and using condition (6), we find that the balls in the load
zone must satisfy the following condition

cos otþ
2pi

N
�at

� �
Z

e

rt
: (7)

The extreme excursion ext(rt) occurs when a single ball is carrying the weight of the rotor and shaft. For a quasi-static
shaft osE0 and using Hertzian contact theory, that value is

extðrtÞ ¼ eþ
W

k

� �2=3

: (8)

Substituting this value in Eq. (7) yields the load distribution angle

fc ¼ 2 cos�1 e

eþðW=kÞ2=3
: (9)

The number of balls inside the loading zone can then be found from

Nc ¼
N

p cos�1 e

eþðW=kÞ2=3
: (10)

We note that for a dynamic case osa0, the number of balls in the loading zone Nc and their locations within the zone will
change with time, thereby changing the system stiffness. This is the underlying source of vibrations and the time varying
nature of the system.

3. Equilibrium points

The equilibrium points of the shaft, denoted (xe, ye), are any set for which the time derivatives in the equations of
motion, Eq. (5), are identically zero

XNc�1

i ¼ 0

xe cos otþ
2pi

N

� �
þye sin otþ

2pi

N

� �
�e

� �1:5

cos otþ
2pi

N

� �
¼ 0;

XNc�1

i ¼ 0

xe cos otþ
2pi

N

� �
þye sin otþ

2pi

N

� �
�e

� �1:5

sin otþ
2pi

N

� �
¼

W

k
: (11)

The location of the equilibrium points depends on the clearance e, radial force W, and the number of balls in the loading
zone Nc.

The maximum number of balls inside the loading zone N/2 occurs when there is no internal clearance e=0. In this case
and for a quasi-static shaft osE0, we find, (developed in Appendix A), that for an even number of balls NZ8 there is a
single equilibrium point located at ðxe; yeÞje ¼ 0 ¼ ð0;�ð4W=NkÞ2=3

Þ.
In order to study the bifurcations of the equilibrium point as the internal clearance increases e40, we solved

Eq. (11) numerically for ball bearings SKF6204 with the specifications listed in Table 1. First, the equilibrium points were
obtained under a quasi-static condition osE0. The number of balls in the loading zone was found to vary between four
and one depending on the amount of internal clearance. Fig. 3 shows the location of the equilibrium points in the X–Y

plane.
When the internal clearance was less than eo4.5mm, the inner ring was in contact with 3 or 4 balls and a single

equilibrium point existed. As the internal clearance increased beyond e=4.5mm, three coexisting equilibrium points
appeared. We characterize the stability of those points by evaluating the eigenvalues of the Jacobian matrix of the static
Table 1
Specification of ball bearing SKF 6204.

Ball diameter (mm) 7.938 Race groove radius (mm) 4.1278

Inner race diameter (mm) 25.5620 Number of balls 8

Outer race diameter (mm) 41.4380 Rotor-shaft weight (N) 23.004

Pitch diameter (mm) 33.5 Coefficient of stiffness (N/m1.5) 9.21�109
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equilibrium equations, Eq. (11), at each equilibrium point (xe, ye)

J¼

0 1 0 0

�k

m

XNc�1

i ¼ 0

1:5ðxe cosyiþye sinyi�eÞ0:5 cos2 yi �
c

m

�k

m

XNc�1

i ¼ 0

1:5ðxe cosyiþye sinyi�eÞ0:5 cos2 yisinyi 0

0 0 0 1

�k

m

XNc�1

i ¼ 0

1:5ðxe cosyiþye sin yi�eÞ0:5 cos2 yisinyi 0
�k

m

XNc�1

i ¼ 0

1:5ðxe cosyiþye sinyi�eÞ0:5 sin2 yi �
c

m

2
6666666664

3
7777777775
:

(12)

The Jacobian matrix generates four complex eigenvalues with negative real parts for all of the equilibrium points in the
range 0rer4.5mm confirming their stability. In the range of e44.5mm, the equilibrium point closest to the Y-axis is
unstable with two real eigenvalues having opposite signs and the equilibrium points away from the Y-axis is stable with all
four eigenvalues having negative real parts. These results show that the equilibrium point undergoes a supercritical
pitchfork bifurcation at e=4.5mm for that bearing.

The motions of the shaft shown Fig. 4 were obtained from long-time integration of Eq. (5) for a cage speed of
o=100 rpm and two internal clearance values below and above the pitchfork bifurcation. The damping coefficient
c=572.4 N s/m was measured experimentally using an impact test. Fig. 4(a) shows that the equilibrium point is a node with
a closed symmetric orbit below the bifurcation. Beyond the bifurcation point e44.5mm, the symmetry of the orbit is
broken, Fig. 4(b), and two-potential wells appear around the two nodes separated by the saddle.

For the dynamic case osa0, the nonlinear algebraic system of equations in (11) is solved using Newton–Raphson method
for the unknowns (xe, ye) at discrete points in time. Where more than one equilibrium point is available, the initial guess used
to start the numerical routine is varied away from the centerline of the bearing (x=0) until all possible solutions are obtained.

For internal clearance values below the bifurcation point, e=4.5mm, the results are unchanged with a single stable
equilibrium point (node) located at the Y-axis. When the internal clearance increases past the bifurcation point, the
solution of Eq. (11) results in three equilibrium points with similar characteristics to those found in the quasi-static case at
each point in time. As a result, the locations of the three equilibrium points vary with time over different stretches of a
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curve rather than exist at discrete locations. Each clearance value has its own equilibrium curve as shown in Fig. 5 for a
cage speed of o=800 rpm. These curves are symmetric with respect to the Y-axis. As the shaft rotates, the saddle moves on
the center stretch of the curve, while each of the nodes move on one of the outer stretches.

The bifurcation point at e=4.5mm separates two qualitatively different types of bearing vibrations. For small internal
clearances eo4.5mm, below the bifurcation point, the self-excited vibrations are regular, symmetric, and periodic. Beyond
the bifurcation point a ‘two-well potential’ system develops [24]. At low shaft speeds, the motions are asymmetric,
periodic, and confined to one of the two wells (occurring on one side of the Y-axis only). Once the shaft speed is high
enough for the self-excited oscillator to provide the necessary energy, the shaft starts jumping from one well to the other in
a chaotic manner; that is: periodic excitation at a single frequency o leading to random-like motions of the shaft with a
broad spectrum of frequencies. As a result, the locations of the nodes and saddles travel randomly back and forth along the
equilibrium curve as the shaft orbits in the phase space. This is the underlying source of the asymmetric (tailed) and net-
like structure of the shaft orbits observed by Tiwari et al. [20] at low shaft speeds. At higher shaft speeds, chaos disappears
and a periodic motion encompassing both wells, Fig. 4(b), appears.
4. Periodic vibrations

4.1. Analytical solution

To obtain a closed-form expression for the response of the bearing, the equations of motion, Eq. (5), are simplified by
expanding the x- and y-components of the restoring force in Taylor-series around the equilibrium point. This
approximation is valid only for motions in the neighbourhood of a single equilibrium point (one-well oscillations).
Figs. 6 and 7 show the steady-state response of the full model compared with first-, second-, and third-order
approximations when the internal clearance is equal to 0 and 4mm, respectively.

For zero clearance e=0, the error in the response obtained using all three levels of approximation is negligible at low
o=7.5 rpm and high o=750 rpm cage speeds. For higher values of the internal clearance e=4mm, Fig. 7, the second and
third-order approximations are more accurate than the first-order approximation. However, the steady-state error of the
first-order approximation is less than 0.2% at a cage speed of o=4800 rpm. Therefore, the first-order expansion of the
equations of motion

€xþm _xþa11xþa12y¼ fx;

€yþm _yþa21xþa22y¼ fyþW=m; (13)

will be adopted for the internal clearance range of 0rer4.5mm and for xe=0, where only one-well oscillations are
present. The parameters m, amn(t), fx(t) and fy(t) are defined by:

m¼ c=m;

fx ¼
k

m

XNc�1

i ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye sinyi�e

p
ð0:5ye sinyi cosyiþe cosyiÞ;
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fy ¼
k

m

XNc�1

i ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye sinyi�e

p
ð0:5ye sin2 yiþe sinyiÞ;

a11 ¼
3k

2m

XNc�1

i ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye sin yi�e

p
cos2 yia22 ¼

3k

2m

XNc�1

i ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye sinyi�e

p
sin2 yi;

a12 ¼ a21 ¼
3k

2m

XNc�1

i ¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye sinyi�e

p
cosyi sinyi: (14)
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The generalized method of averaging [25] is utilized to solve the coupled linear time-varying differential system in
Eq. (13) for two cases:
(1)
Fi
ball bearings with zero internal clearance,

(2)
 ball bearings with a small radial clearance 0rer4.5mm.
4.1.1. Case 1: zero clearance, e=0mm

In this case, the loading zone angle is fc=p and the number of load bearing elements is Nc=N/2. To further simplify the
equations of motion, curve fitting is used to replace the parameters of Eq. (14) as follows:

fx � cx sin Not;

fy � c0yþcy cos Not;

a11 � s2
xþc11 sin2 Not¼ s2

xþ
c11

2

� �
�

c11

2
sin 2Not; (15)

a12 � c12 sin Nota22 � s2
yþc22 cos Not;

where

sx ¼ 1:12312

ffiffiffiffiffi
k

m

r ffiffiffiffiffi
ye

4
p

;

sy ¼ 1:66174

ffiffiffiffiffi
k

m

r ffiffiffiffiffi
ye

4
p

; (16)

and the coefficients cmn are determined through curve fitting. Fig. 8 shows the time-varying parameters of Eq. (14) and
their approximation using Eq. (15) for one revolution of the cage. The figures show that the curve-fitted functions and the
original parameters are in good agreement.

Time t is normalized using the following parameters:

t1 ¼ sxt t2 ¼ syt;

2x1sx ¼ m 2x2sy ¼ m: (17)
0

m
/s

2
10

6 /s
2

2�

0

4

6

8

10

-2

0

2

m
/s

2

10
7 /s

2

10
5 /s

2

0

0 0

�

0.1

-0.1
2� 2�

0 02� 2�

1.205

1.2

1.195

1.19

4.92

4.9

4.88

4.86

g. 8. The parameters (a) fx, (b) fy, (c) a11, (d) a12 and a21, and (e) a22 (solid lines) of Eq. (13) and their approximations (dotted lines) in Eq. (15).
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Therefore

o1 ¼
No
sx

o2 ¼
No
sy

;

dx

dt
¼ sx

dx

dt1

dy

dt
¼ sy

dy

dt2
;

d2x

dt2
¼ s2

x

d2x

dt2
1

d2y

dt2
¼ s2

y

d2y

dt2
2

:

Using the normalized parameters in Eq. (13) yields

€xþ2x1 _xþ 1þ
c11 sin2 o1t1

s2
x

 !
xþ

c12 coso1t1

s2
x

� �
y�

cx sino1t1

s2
x

¼ 0;

€yþ2x2 _yþ
c21 sino2t2

s2
y

 !
xþ 1þ

c22 coso2t2

s2
y

 !
y�

cy coso2t2

s2
y

�
mc0yþW

ms2
y

 !
¼ 0: (18)

We use the method of variation of parameters to obtain solutions for Eq. (18) when the ball passage speed is in the
neighbourhood of the natural frequency of horizontal shaft motions (NoEo1) and in the neighbourhood of the natural
frequency of vertical motion shaft (NoEo2).

The horizontal and vertical natural frequencies o1 and o2 are incommensurate (p sxaq sy) and far from each other.
Therefore, in the vicinity of the natural frequency and in the presence of damping we can decouple the steady-state
motions in the horizontal and vertical directions, since the motions in the non-resonant direction will decay over time.
Consequently, the bearing response can be represented using a single degree of freedom in each of the sub-cases (NoEo1)
and (NoEo2):

x¼ u1 cosðo1t1þg1Þ; _x ¼�o1u1 sinðo1t1þg1Þ;

y¼ u2 cosðo2t2þg2Þ; _y ¼�o2u2 sinðo2t2þg2Þ: (19)

Letting o1t1þg1 ¼j and o2t2þg2 ¼c, and substituting Eq. (19) into (18) we get the following set of equations

_u1 ¼�u1o1 sinj cosj�2x1u1 sin2 jþ 1þ
c11 sin2

ðj�g1Þ

s2
x

 !
u1 sinj cosj

o1
þ

u2c12 cosðj�g1Þsinj cosc
o1s2

x

�
cx sinðj�g1Þsinj

o1s2
x

;

_g1 ¼�o1 cos2 j�2x1 cosj sinjþ 1þ
c11 sin2

ðj�g1Þ

s2
x

 !
u1 cos2 j

o1
þ

u2c12 cosðj�g1Þcosj cosc
u1o1s2

x

�
cx sinðj�g1Þcosj

u1o1s2
x

:

(20)

_u2 ¼�u2o2 sinc cosc�2x2u2 sin2 cþ
c21 sinðc�g2Þu1 sinc cosj

o2s2
y

þ 1þ
c22 cosðc�g2Þ

s2
y

 !
u2 sinc cosc

o2
�

cy cosðc�g2Þsinc
o2s2

y

�
ðmc0yþWÞsinc

mo2s2
y

;

_g2 ¼�o2 cos2c�2x2 cosc sincþ
u1c21 sinðc�g2Þcosc cosj

u2o � s2
y

þ 1þ
c22 cosðc�g2Þ

s2
y

 !
cos2 c
o2

�
cy cosðc�g2Þcosc

u2o2s2
y

�
ðmc0yþWÞcosc

mo2u2s2
y

:

(21)

Using Kryolov–Bogoliubov first approximation, the right hand-side of Eqs. (20) and (21) can be averaged for one period
over j and c, respectively, to produce the modulation equations for the sub-case (NoEo1)

_u1 ¼ x1u1�
u1c11 sin 2g1

8o1s2
x

�
cx cos g1

2o1s2
x

;

_g1 ¼�
o1

2
�

c11 cos 2g1

8o1s2
x

þ
cx sin g1

2u1o1s2
x

þ
2s2

xþc11

4o1s2
x

: (22)

And the sub-case (NoEo2)

_u2 ¼�x1u2�
cy sin g2

2o2s2
y

;

_g ¼ o2

2
þ

1

2o2
�

cy cos g2

2u2o2s2
y

: (23)
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To study the steady-state response of the system, the fixed points of each set of modulation equations are found by
setting right hand-sides of Eqs. (22) and (23) equal to zero and assuming c11u154cx. We obtain the frequency-response
functions for the horizontal and vertical bearing motions in closed-form as

u1 ¼
cx

2s2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1o1Þ

2
þ

o2
1

2
�

2s2
xþc11

4s2
x

� �2
s ; (24)

and

u2 ¼
cy

2s2
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2o2Þ

2
þ

o2
2

2
�

1

2

� �2
s : (25)

4.1.2. Case 2: a small clearance (e=4mm)

In this case, the number of balls in the loading zone can be obtained from Eq. (10). In order to apply the method of
averaging, the square root term in Eq. (14) is approximated as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ye sinyi�e

p
�

ye

2
ffiffiffi
e
p sin2 yi: (26)

Fig. 9 shows that this approximation is valid within a limited range of the period when ball number i is in the loading zone.
Outside that range, the approximate function is set equal to zero since the ball is not applying force to the shaft.

Time, in the simplified equations of motion, Eq. (13), is normalized according to Eq. (17), therefore we can write

o1 ¼
o
sx

o2 ¼
o
sy

(27)

and obtain

€xþ2x1 _xþ
3kye

4
ffiffiffi
e
p

ms2
x

XNc�1

i ¼ 0

sin2 yi cos2 yi

 !
xþ

3kye

4
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e
p
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x

XNc�1

i ¼ 0

sin3 yi cosyi

 !
y�
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2
ffiffiffi
e
p

ms2
x

XNc�1

i ¼ 0

sin2 yið0:5ye sinyi cosyiþe cosyiÞ

¼ 0 €yþ2x2 _yþ
3kye

4
ffiffiffi
e
p

ms2
y

XNc�1

i ¼ 0

sin3 yi cosyi

 !
xþ

3kye

4
ffiffiffi
e
p

ms2
y

XNc�1

i ¼ 0

sin4 yi

 !
y�

kye

2
ffiffiffi
e
p

ms2
y

XNc�1

i ¼ 0

sin2 yið0:5ye sin2 yiþe sinyiÞ ¼
W

m
:

(28)

Using the method of variation of parameters, we obtain solutions of Eq. (28) for the sub-cases treated in the previous sub-
section: (NoEo1) and (NoEo2). Following a similar argument, we decouple the motions in the horizontal and vertical
directions and use the one-mode approximations assumed in Eq. (19). Using Eq. (19) in (28), we transform them to the
first-order form

_u1 ¼�u1o1 sinj cosj�2x1u1 sin2 jþ 3u1kye

4
ffiffiffi
e
p

mo1s2
x

XNc�1

i ¼ 0

sin2
ðji�g1Þ cos2 ðji�g1Þ sinj cosjþ 3u2kye

4o1

ffiffiffi
e
p

ms2
x

0 π 2π 0 π 2π 0 π 2π

Fig. 9. Plots of the full model (solid lines) and approximate (dotted lines) functions of Eq. (26). For ball number (a) i=0 the valid range is [0, p], (b) i=1 the

valid range is [0, (3/4)p][[(7/4)p, 2p], and (c) i=2 the valid range is [0, (1/2)p][[(3/4)p, 2p].
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XNc�1

i ¼ 0

sin3
ðji�g1Þ cos ðji�g1Þ sinj cosc�

kye

2
ffiffiffi
e
p

mo1s2
x

XNc�1

i ¼ 0

sin2
ðj�g1Þð0:5ye sin ðji�g1Þ cos ðji�g1Þþe cos ðji�g1ÞÞsinj:

_g1 ¼�o1 cos2 j�2x1 sinj cosjþ 3kye

4
ffiffiffi
e
p

mo1s2
x

XNc�1

i ¼ 0

sin2
ðji�g1Þ cos2 ðji�g1Þ cos2 jþ 3u2kye

4o1u1

ffiffiffi
e
p

ms2
xXNc�1

i ¼ 0

sin3
ðji�g1Þ cos ðji�g1Þ cosj cosc�

kye

2
ffiffiffi
e
p

mo1u1s2
x

XNc�1

i ¼ 0

sin2
ðj�g1Þð0:5ye sin ðji�g1Þ cos ðji�g1Þþe cos ðji�g1ÞÞcosj

(29)

and

_u2 ¼�u2o2 sinc cosc�2x2u2 sin2 cþ
3u1kye

4
ffiffiffi
e
p

mo2s2
y

XNc�1

i ¼ 0

sin3
ðci�g2Þ cos ðci�g2Þ sinc cosjþW sinc

mo2s2
y

þ
3u2kye

4o2

ffiffiffi
e
p

ms2
y

XNc�1

i ¼ 0

sin4
ðci�g2Þ sinc cosc�

kye

2
ffiffiffi
e
p

mo2s2
y

XNc�1

i ¼ 0

sin2
ðci�g2Þð0:5ye sin2

ðci�g2Þþe sin ðci�g2ÞÞsinc;

_g2 ¼�o2 cos2 c�2x2 sinc coscþ
3u1kye

4
ffiffiffi
e
p

mo2s2
y

XNc�1

i ¼ 0

sin3
ðci�g2Þ cos ðci�g2Þ cosc cosjþ W cosc

mo2u2s2
y

þ
3kye

4o2

ffiffiffi
e
p

ms2
y

XNc�1

i ¼ 0

sin4
ðci�g1Þ cos2 c�

kye

2
ffiffiffi
e
p

mo2u2s2
y

XNc�1

i ¼ 0

sin2
ðci�g2Þð0:5ye sin2

ðci�g2Þþe sin ðci�g2ÞÞcosc: (30)

Averaging the right hand-side of Eqs. (29) and (30) over the range where each ball is in the loading zone results in two sets
of modulation equations representing the decoupled horizontal u1 and vertical u2 resonant responses

_u1 ¼�u1x1þ
C1

o1
ðsin g1þcos g1Þ;

_g1 ¼�
o1

2
þ

C2

o1
�

C1

u1o1
ðsin g1�cos g1Þ; (31)

and

_u2 ¼�u2x2þ
C3u2

o2
cos 2g2�

C4

o2
ð�sin g2þcos g2Þ;

_g2 ¼�
o2

2
þ

0:28C3

o2
þ

C3

o2
sin 2g2�

C4

u2o2
ð�sin g2�cos g2Þ; (32)

where

C1 ¼
0:1067kye

2
ffiffiffi
e
p

ms2
x

C3 ¼
0:1875ky2

4
ffiffiffi
e
p

ms2
y

;

C2 ¼
0:273kye

4
ffiffiffi
e
p

ms2
x

C4 ¼
0:3201kye

ffiffiffi
e
p

2ms2
y

: (33)
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Fig. 10. The analytical (solid lines) and numerical (dotted lines) frequency-response curves of the (a) horizontal and (b) vertical shaft motions for e=0mm.
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To find the steady-state response, we set the left hand-side of each set of modulation equations equal to zero and assume
that C3 u25C4 to obtain the frequency-response functions of the horizontal and vertical bearing motions

u1 ¼

ffiffiffi
2
p

C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1o1Þ

2
þ

o2
1

2
�C2

� �2
s

u2 ¼

ffiffiffi
2
p

C4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2o2Þ

2
þ

o2
2

2
�0:28C3

� �2
s : (34)

4.2. Comparison of analytical and numerical solutions

Fig. 10 compares the frequency-response curves of the horizontal u1 and vertical u2 motions obtained using the method
of averaging to those obtained using numerical integration of the full model, Eq. (5), for ball bearing SKF6204. There is good
agreement between the analytical and numerical responses. However, the quality of the approximation deteriorates in the
neighbourhood of the superharmonic resonance of order one-half, 1/2o1 and 1/2o2, of the vertical and horizontal motions
and in the neighbourhood of primary resonance o1 of the vertical motion. The reason for the former discrepancy is the
underlying assumption, in Eq. (19), that the balls are responding to primary-resonance excitations in the neighbourhood of
the natural frequency o1 or o2. As the frequency of excitations move away from these neighbourhoods, the quality of the
approximation degrades. The reason for the latter discrepancy is that our approximate solution, Eq. (23), ignores the
coupling between the horizontal and vertical modes of vibration.

Fig. 11 compares the frequency-response of the horizontal and vertical shaft motions obtained analytically to those
obtained numerically for ball bearing SKF6204. Fig. 11(a) shows good agreement between the two sets of results indicating
that the analytical solution is a good approximation of the horizontal motions throughout the range of frequency. The
quality of the approximation deteriorates for vertical shaft motions, Fig. 11(b), especially in the neighbourhood of the
natural frequency of the horizontal motions o1 and its superharmonic and subharmonic resonances. This is expected since
the basic assumption, Eq. (19), that the vertical and horizontal motions can be decoupled is violated in these ranges of
excitation. These results indicate that for small non-zero internal clearance, the energy transferred from the vertical to the
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horizontal motions of the shaft is small and can be ignored, but the energy transferred from the horizontal to the vertical
motions is significant and cannot be ignored. This is in agreement with Tiwari et al. [14] experimental finding of cross-
coupling between the vertical and horizontal natural frequencies in ball bearings.

Comparing the frequency-response curves at zero clearance, Fig. 10, and small positive clearance, Fig. 11, shows that
increasing the internal clearance lowers the vertical and horizontal natural frequencies. As a result, bearings with larger
internal clearances will experience resonance at lower shaft speeds. This result is in agreement with the experimental and
analytical results of Tiwari et al. [14,20]. The reason for this softening effect is the decrease in the ‘average’ number of balls
supporting the rotor-shaft weight over a single period as the clearance increases which decreases the ‘effective’ linear
stiffness of the oscillator. This effect is more pronounced in the vertical than in the horizontal direction. In fact, the order of
the natural frequencies of the bearing reverses between e=0 and e=4mm. At e=0, o1oo2, whereas at e=4mm o14o2.

5. Chaotic vibrations

Our results and those of other researchers, such as Tiwari et al. [20], indicate that one or more chaotic attractors can
appear in the vibrations of ball bearings as the shaft speed increases depending on the amount of internal clearance in the
bearing. Therefore, a comprehensive mapping of the chaotic attractors in the response of the ball bearing requires a
systematic study of the response of ball bearings in the internal clearance–shaft speed parameter space.

We start by constructing the bifurcation diagram of the bearing vibrations, Fig. 12, for an arbitrary value of the internal
clearance e=7mm. The diagram is constructed by sampling _Y at the ball passage frequency No as the shaft speed os was
increased from 0 to 3000 rpm. The figure shows multiple chaotic attractors in two shaft speed zones: a zone in the
neighbourhood of the horizontal natural frequency stretching from 557 to 2220 rpm and a zone in the neighbourhood of
the vertical natural frequency starting at 2723 rpm. The chaotic attractors in the first zone exist in bubble structures
bracketed by the cascades of period doubling and reverse period doubling indicated in the figure. The reverse period
doubling cascade at os=2220 rpm is shown in Fig. 13. As the shaft speed increases from os=2225 to 2260 rpm, a period 4 T
orbit gives way to a period 2T orbit. At os=2315 rpm, the period 2T orbit gives birth to a period 1T orbit.

We determined the presence of chaos in the vibrations of the ball bearing by observing the evolution of the bearing
vibrations on planar projections of phase-space. Chaotic motions wander in a limited area within the projection plane
without closing. Fig. 14 compares the orbits of the shaft motion projected onto the Y� _Y plane for various internal
clearances and a shaft speed of os=3000 rpm. For small internal clearances of e=0 and 3mm shown in Figs. 14(a) and (b),
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respectively, the bearing vibrations are periodic. At the larger internal clearance of e=7mm, corresponding to the rightmost
point of Fig. 12, the bearing vibrations are aperiodic filling a limited region of the phase plane and indicating chaos.

To generate the chaos map shown in Fig. 15, the internal clearance was increased from 0 to 24mm in steps of 1mm and a
bifurcation diagram was constructed at each step. Each bifurcation diagram was then sampled at a constant shaft speed os

interval. The results are reported in the chaos map as the size of the chaotic attractor at a pixel in the internal clearance–
shaft speed (e�os) plane using color code. The size of a chaotic attractor is measured as the difference between the
maximum and minimum values of _Y in the bifurcation diagram. Dark blue corresponds to periodic solutions where the
attractor size is reported as zero (no chaos). All other colors indicate the presence of chaos, with the color grading
indicating the relative size of the chaotic attractor. A qualitative sense of the correspondence between the color grading
and the size of the attractor can be obtained by comparing the seventh line of Figs. 15–12. As expected, no chaotic
attractors appear for internal clearance values e410mm where single-well oscillations preclude the possibility of chaos.
On the other hand, the absence of any dark blue pixels in the map for e45mm and os43000 rpm shows that chaotic
motions dominate the bearing response when the internal clearance is larger than 5mm and the shaft speed os is higher
than 2500 rpm.
6. Conclusions

This work seeks to explain the vibration characteristics of balanced fault-free bearings. We found that the number and
location of the equilibrium points of the lumped rotor-shaft mass depends on the internal clearance in the bearing.
Bearings with clearance smaller than a critical value eoecr (class C1) have one stable equilibrium point. This point is
located at the vertical symmetry line of the bearing. It translates downward along that line as the clearance increases. For
nonzero shaft speeds, the bearing behaves as a self-excited oscillator excited at the ball passage frequency and exhibits a
symmetric periodic orbit around this equilibrium point. For larger clearance values, e4ecr (class C2 and higher), three
equilibrium points exist: an unstable saddle near the centerline and two stable equilibrium points on either side. The
locations of these equilibrium points change over time along an arch composed of a center unstable stretch and two outer
stable stretches.

The critical value of internal clearance ecr is a function of the bearing dimensions and structure. For ball bearing
SKF6204, we found that critical value to be ecr=4.5mm. As the internal clearance increases past ecr, the equilibrium point
undergoes a supercritical pitchfork bifurcation changing the dynamics of the bearing from an oscillator operating in a one-
potential well to an oscillator operating in a two-potential wells. At low shaft speeds, the bearing develops single-well
(asymmetric) periodic orbits. As the shaft speed increases, two-well orbits appear around the two stable equilibrium
points, which keep changing their locations over time resulting in the asymmetric net-like chaotic orbits reported by other
researchers. As the shaft speed increases further, two-well periodic orbits develop.

We used the method of averaging to developed closed-form expressions of the frequency-response functions of the
bearing horizontal and vertical motions for ball bearings operating in one-potential well eoecr. Specifically, we obtained
the frequency-response functions of the ball bearings SKF6204 horizontal and vertical motions at e=0 and 4mm. Our
results indicate that increasing the internal clearance has a softening effect on the bearing stiffness that decreases its
vertical and horizontal natural frequencies. We also found that horizontal motions can be assumed uncoupled from
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vertical motions but that vertical motions can only be assumed uncoupled from horizontal motions for negligible bearing
clearance eE0. For small non-zero clearance values, significant energy transfers from horizontal to vertical motions
preclude the assumption of uncoupled vertical motions.

For bearings with internal clearance values past the pitchfork bifurcation e4ecr, multiple chaotic attractors develop in
two zones of the shaft speed os corresponding to the horizontal and vertical natural frequencies of the bearing. The
number, frequency range, and size of those attractors increase as the value of the internal clearance and the shaft speed
increases. We developed a chaos map to capture the distribution and intensity of chaos in the internal clearance–shaft
speed parameter space.

We conclude that the development of a health monitoring system for ball bearings should start from a realization that
chaos is not necessarily an indicator of a bearing fault or a shaft-rotor unbalance. Chaos arises naturally and frequently in
balanced fault-free bearings with an internal clearance value beyond the pitchfork bifurcation of the bearing equilibrium
point. Therefore, the monitoring system will have to ascertain whether the healthy bearing is operating in a chaotic or
periodic regime. For bearings operating in a chaotic region, health monitoring will have to depend on tracking changes in
the characteristics of the chaotic attractor rather than the mere existence or lack of chaos.
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Appendix A

Assuming e=0, a quasi-static loading condition osE0, and using the polar transformation xe=re cosje and ye ¼ re sinje

in Eq. (5) yields

XN=2�1

i ¼ 0

re cos je�
2pi

N

� �� �1:5

cos
2pi

N

� �
¼ 0;

XN=2�1

i ¼ 0

re cos je�
2pi

N

� �� �1:5

sin
2pi

N

� �
¼

W

k
: (A.1)

In the range [3p/2,2p], it can be assumed that:

cos1:5 j�2pi

N

� �
� cos j�2pi

N

� �
:

When N is an even number larger than 8, trigonometric combinations transform the set of equations into following

Nr1:5
e cos ðjeÞ

4
¼ 0;

�
Nr1:5

e sin ðjeÞ

4
¼

W

k
; (A.2)

which results in

ðxe; yeÞje ¼ 0 ¼ ð0;�ð4W=NkÞ2=3
Þ: (A.3)
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